HITACHI COMPACT FLOPPY DISK DRIVE MODEL HFD305S

3"-SINGLE-SIDED, DOUBLE-DENSITY TYPE

INSTRUCTION MANUAL

(苂 HITACHI

1. SPECIFICATIONS
(1) Performance

Table 1 Performance

(2) Power Specifications

Table 2 Power Specifications

Power	Status Item	Standby	Operating	During motor start-up
DC 12V	Tolerance	$\pm 5 \%$		
	Ripple noise	100 mV p-p or below		
	Current consumption	0.1A (typ)	0.7A (max)	1A (max)
DC 5 V	Tolerance	$\pm 5 \%$		
	Ripple noise	50 mV p-p or below		
	Current consumption	0.5A (typ)	0.8 A (max)	
Nominal power consumption		3.7W (typ)	12.4W (max)	-

NOTES: 1. Current consumption and power consumption during standby are reference values.
2. "Standby", "Operating", and "During motor startup" respectively correspond to the following status:

	Drive motor	Record media	SEEK operation
Standby	OFF	Dismounted or mounted	OFF
Operating	ON	Mounted	ON
During motor start-up (within one sec. from MOTOR ON)	ON	Mounted	OFF

NOTES: 3. Both supply voltage tolerance and ripple noise refer to the specified value for the drive-side receiving end.
4. When the power is turned $O N$, switching to the standby status is not effected until the READY signal is output.
(3) Environment Specifications

Table 3 Environment Specifications

Item	Operating	Nonoperating
Ambient temperature	$10 \sim 40^{\circ} \mathrm{C}$	$-20 \sim 50^{\circ} \mathrm{C}$
Relative humidity	$20 \sim 80 \% \mathrm{RH}$	Noncondensing
Max. wet-bulb temperature	$29^{\circ} \mathrm{C}$ or below (noncondensing)	

(4) Mounting Specifications

Table 4 Mounting Specifications

NOTE: 1. Outer dimensions refer to that portion at the rear of front panel. For details, refer to Eig. 1 "Diagram of Outer Dimensions and Mounting Dimensions" on the following page.

Fig. 1 Diagram of outer dimensions and mounting dimensions
(5) Reliability Specifications

Table 5 Reliability Specifications

Item		Specifications
MTBF		$8,000 \mathrm{POH}$ (reference value) *1
MTTR		0.5 Hr
Unit life		Five years or $15,000 \mathrm{POH}$, whichever is shorter (maintenance parts excluded)
Error rates	Soft errors	10^{-9} times/bits
	Hard errors	10^{-12} times/bits
	Seek errors	10^{-6} times/seeks

NOTE: 1. Running time of the drive motor is set at 25% of POH (POWER ON hours) under normal operating conditions. And pad exchange time interval is 2,000 POH.
2. CONFIGURATION

The Compact Floppy Disk Drive (FDD) consists of a mechanical part and a logical part. Fig. 2 is a schematic diagram of its construction.
(1) Load/Unload Mechanism

Media loading is automatically effeected by inserting the cartridge of the Compact Floppy Disk. In this case, the shutter of the head opening is automatically opened so that head loading can also be effected.

By pressing the eject button, the record media is automatically ejected.

Fig. 2 Construction Schematic•Diagram
(2) Drive Mechanism

The drive mechanism consists of a drive motor, drive pin, and hub retainer. The drive pin connected to the drive motor fits into the hub drive groove of a record media for driving the mechanism.
(3) Positioning Mechànism

Carriage positioning is effected by a step motor through using a steel beit.
(4) Index Sensor

Upon sensing an index hole (small hole) in the record media, the LED/Photo Transistor combination produces an index pulse.
(5) Track 00 Sensor

Upon sensing--according to the carriage position--that the magnetic head is positioned at Track 00, this sensor produces a TRACK 00 signal.
(6) Write Protect

The write protect circuitry consists of a pair of LED and a photo transistor, and a logic circuit. Checking is effected by the status of a write inhibit detection hole in the Compact Floppy Disk plastic case; when the hole is not masked, a write inhibit status is established so that data writing is rejected.
(7) Operation Display LED

Mounted on the front panel, this operation display LED is designed to notify the user that the drive is in a specific state of operation. This LED is turned ON through "OR" of the IN USE signal and the DRIVE SELECT signal.

When the B-side on the loaded disk is in the IN USE state, the red LED is lit. When the A-side is in use or no disk is loaded, and the IN USE signal or DRIVE SELECT signal is given, the green LED is lit.
(8) Drive Motor Control

This electronic control circuit enables the brushless, direct drive motor to run at a stabilized, fixed speed against load fluctuations.

Further, a host system power connector and a part of the Logic PCB such as the step motor drive circuit are mounted on this control.
(9) Logic PCB

The control circuit, which consists of a control logic circuit inclucing a Write/Read control circuit, controls the drive in accordance with instructions from a host system.

The Logic PCB contains the following main circuits; a block diagram of the logic circuit is shown in Fig. 3.

a) DRIVE SELECT circuit
b) Positioning control circuit
c) INDEX detector circuit
d) WRITE PROTECT detector circuit
e) TRACK 00 detector circuit
f) READY detector circuit
g) Read circuit
h) Write circuit
3. RECORDING MEDIA
(1) Recording Media

The recording media applied to this FDD is made of flexible mylar sheet provided with magnetic material coating and enclosed in a special plastic case as shown in Fig. 4.

Mark
This floppy disk is applied to the
C
floppy disk drive wearing this mark.
(2) Operating Method
(a) This floppy disk permits its use on both sides.
(b) When using the floppy disk on a single-sided type drive, turn the disk over upon completing operation on the A -side and operate it on the B-side.

Fig: 4 Recording Media
(c) Data writing is not effective when moving the write inhibit tab and opening the write inhibit hole by a ball-point. pen or the like:
(d) Insert the floppy disk straight and precisely into the drive.
(3) Handling Instructions
(a) Do not open the shutter nor finger.-the magnetic surface.
(b) Do not forcibly depress the shutter plate nor apply an excessive force to the opening/ closing spring (slider); trouble may result.
(c) Do not forcibly bend the body. Trouble may result.
(d) Do not use the floppy disk with its hub deformed or dusty; otherwise, errors may occur. Keep the disk constantly clean.
(e) Do not attempt to clean with thinner, alcohol. freon, or similar chemicals.
(f) Do not use a rubber eraser for cleaning.
(g) Avoid eating/drinking and smoking near the floppy đisk.
(4) Storing Instruction
(a) Upon completion of operation, be sure to insert the disk in the designated case for storage.
(b) Store the floppy disk in a location free from high temperature, moisture, and direct sunshine.
(c) Do not store the floppy disk in a location exposed to a magnetic source.
(d) Do not store the floppy disk in a dusty site.
(5) Operating Environment

Use the Compact Floppy Disk under the following
conditions:
Temperature : 10 to $50^{\circ} \mathrm{C}$
Relative humidity : 20 to 80%
Wet-bulb temperature: $29^{\circ} \mathrm{C}$ or below
Max. rate of tem-
perature variation : $20^{\circ} \mathrm{C} / \mathrm{h}$
Ambient magnetic
field : $4000 \mathrm{~A} / \mathrm{m}$ or below
(Noncondensation on the outer and inner surface of compact floppy disk)

(6) Preservation Environment

The Compact Floppy Disk must be stored under the following conditions:
Temperature : 4 to $50^{\circ} \mathrm{C}$

Relative humidity: 8 to 80%

Ambient magnetic
field
: $4000 \mathrm{~A} / \mathrm{m}$ or below

Prior to using a Compact Floppy Disk exposed to temperature/humidity not conforming to the operating environment specification over a long period, the disk must be adapted to the operating environment.
4. DATA FORMAT

The HFD 305 S permits the use of soft-sectors. Data configuration on the disk can be freely designed according to the user's host system function. An example of the data format is illustrated in Fig. 5 on the following page.

The recommended format includes a single-density type with 16 sectors (128 bytes/sector) and a doubledensity type with 16 sectors (255 bytes/sector).
5. INTERFACE
(1) Connection

Two connectors are used for interface connection. One is $34-$ pin card edge connector J 01 through which signals are received and delivered. The other is

* Indicates the presence of missing clock.
** Indicates ID field.
*** Indicates CRC check character.
Fig. 5 Example of Data Format (16 sectors)

4-pin MATE-N-LOK connector $J 02$ through which the HFD 305 S is supplied with +12 V and +5 V DC power.

The signal interface is available in two types: daisy chain and radial chain. In the daisy chain connection, all terminators must be disconnected except the last one which is terminated as clearly shown in Fig. 6. Provided with four signal lines for use of drive select, the drive side permits daisy chain connection to a maximum of four units by changing dip switch setting.
(2) Cable and Connector

The HFD 305 employs two types of cable--a cable for signal (SIG cable) and a power supply cable (DC cable). The SIG cable is connected to connector J 01; the DC cable is connected to J 02-- both on the drive side.

When the HFD 305 S is directly mounted on the grounded frame of a host sysiem, usually no ground cable needs to be installed.

Fig. 8 shows the mounting position of each connector; Fig. 9 is the connector pin arrangement;

Fig. 10 is the interface connection.

Fig. 6 Daisy Chain Connection

Fig. 7 Radial Chain Connection

Table 6 Cable and Connector

Cable			Cable-side connector		Drive-side connector	
Cable name	Cable type	Cable length	Abbre-viation	Specification	Abbre-viation	$\begin{array}{\|l} \text { Specifi- } \\ \text { cation } \end{array}$
```SIG cable (for signal)```	Flat cable $-100 \Omega$   AWG \#28 or above   Twisted pair $-100 \Omega$   AWG \#28 or above	$\begin{aligned} & 3 \mathrm{~m} \\ & (\max ) \end{aligned}$	P 01	Producer:   3M "Scothflex" $: 3463-0001$   Producer: AMP   Housing: 583717-5   Contact: 1-583616-1   Insertion-error   preventive key	J 01	34 P   card   edge
DC cable (for power supply)	AWG \#20 or above	$\begin{aligned} & 3 \mathrm{~m} \\ & (\max ) \end{aligned}$	P 02	Producer: AMP   Housing: 1-480424-0   Contact: 60619-1	J 02	$\begin{aligned} & \text { Producer } \\ & \text { : AMP } \\ & 350211-1 \end{aligned}$
Ground cable	AWG \#20 or above	$\begin{aligned} & 3 \mathrm{~m} \\ & (\max ) \end{aligned}$		$\begin{aligned} \text { Producer: } & \text { AMP } \\ : & 61060-1 \end{aligned}$		

Table 7 Dip Switch Selecting Method

Name	Status when shipped	Function	
		When shorted	Precaution
2 of DSW1	$\begin{aligned} & \text { DSO } \\ & \text { ON } \end{aligned}$	The drive is activated to ENABLE by DRIVE SELECT 0 signal.	Prior to operation, any one of DSO~ DS3 or MX must be shorted. When using plural drive units in daisy chain connection, the same setting must not be applied to two or more drive units; in this case, MX must not be shorted.
3 of DSW 1	$\begin{aligned} & \text { DS } 1 \\ & \text { OFE } \end{aligned}$	The drive is activated to E:IABLE by DRIVE SELECT 1 signal.	
4 of DSW1	$\begin{aligned} & \text { DS2 } \\ & \text { OFF } \end{aligned}$	The drive is activated to ENABL: by DRIVE SELECT 2 signal.	
5 of DSW1	$\begin{aligned} & \text { DS:3 } \\ & \text { OF: } \end{aligned}$	```The detive is activated to PNABLE by DRIVE SELECT 3 signal.```	
1 of DSW1	$\begin{aligned} & \mathrm{MX} \\ & \mathrm{OFF} \end{aligned}$	The drive is constantly activated to ENABLE regardless of the DRIVE SELECT signal.	



Fig. 8 Connector Mounting Arrangement


Fig. 9 Connector Pin Arrangement

Host system
Max. 3 m
HFD 305 S
Flat cable or twisted pair

Fig. 10 Interface Connection

When shipped, all DSW2 switches are usually set at the ON status. When using plural drive units in daisy chain connection, set all DSW2 switches to the OFF position except that 2 of DSW2. However, all DSW2 switches of only the drive with the terminator must be set at the $O N$ position. Set DSW1 in accordance with the DRIVE SELECT signal.
(3) Interface Circuit (for signals)

The interface circuit and the input/output signal levels are specified in Fig. 11 and Table 8.


Fig. 11 Interface circuit

Table 8 Input/output Signal Level

$\begin{aligned} & \text { Input } \\ & \text { signal } \end{aligned}$	$\begin{gathered} \text { High-level } \\ \text { voltage } \end{gathered}$	```2.4~5.25V (output side: Open collector IOH = 250 \mu}\textrm{A}\mathrm{ max.)```
	Low-level voltage	$0 \sim 0.4 \mathrm{~V}$
	Input impedance	Pull up to 5 V with $150 \Omega$.
Output signal	High level	Open collector output $\mathrm{IOH}=250 \mu \mathrm{~A}$ max .
	Low level	$0 \sim 0.4 \mathrm{~V}$ ( $\mathrm{IOL}=40 \mathrm{~mA} \mathrm{max}$ )

* Input/output signals are all effective at low level.
(4) Input Signal
(a) DRIVE SELECT $0 \sim 3$

Internal connection of
the input lines is connected DS 3
as shown in the figure on
the right.
By turning ON one of the DIP switches, the number of the intended drive is specified. HFD 305 S is shipped with only the DSO shorted, thus, when the DRIVE SELECT O signal is set at the "Low" level, drive selection can be effected for activation of a particular drive. On a system in which plural units of the drive are operated through the daisy chain connection, only one of DSO~ 3 of the drive can be shorted.
(b) MOTOR ON

This input signal, when activated to a "Low" level, will turn $O N$ the drive motor circuit. By turning OFF ("High") this signal during a nonoperating period, motor service life can be extended.

A minimum 0.7 sec . delay after activating this
signal (MOTOR ON) is necessary before read/
write, so that motor speed becomes stabilized.
(c) DIRECTION

This signal, used to specify the direction of the Read/Write head motion, is defined as follows:

High level: Outward (toward outer side of disk)

Low level : Inward (toward inner side of disk)

Switching the direction must be performed 1 or more $\mu \mathrm{sec}$. before the front edge (trailing edge) of a step pulse and 1 or more $\mu \mathrm{sec}$. after the back edge (leading edge) of a step pulse.
(d) STEP

This signal causes the Read/Write head to move one step (one track) in the direction specified by a DIRECTION signal. This operation is performed at the front edge (trailing edge) of a step pulse. The minimum period of repetition is 3 ms ; repetition at a shorter period will not ensure precise step feed. Exercise care!

(e) WRITE DATA

This is a signal for writing data on the disk.
Each transition from a "High" to a "Low" level at the trailing edge will cause current through the Read/Write head to be reversed, thus writing a data bit. This writing is possible only when a WRITE GATE signal is at a "Eow" level. Timing accuracy of the WRITE DATA signal must meet the requirements of Fig. 12.
(f) WRITE GATE

When this signal is at a "Low" level, writing data on the disk is possible. This signal must be kept at a "High" level during Read or Seek operation.

Since the Erase head operates for about 1 m sec . after the WRITE GATE signal has been turned OFF, turning OFF or switching of the DRIVE SELECT signal and the MOTOR ON signal is impossible for a minimum of 1.7 m sec .

Although a STEP pulse is neglected while the Write and Erase heads are in operation, this signal also must be inhibited for a minimum of 1.7 m sec after the WRITE GATE signal has been turned OFF.
(g) IN USE

This signal is used to light the Operation display LED on the front panel. The LED also can be lit by a DRIVE SELECT signal in addition to this signal.

For FM record


For MFM record


Fig. 12 WRITE DATA Timing Accuracy
(5) Output Signal
(a) INDEX

Upon sensing the index hole once every rotation of the disk, an INDEX pulse is output to indicate the beginning of a track.
(b) TRACK 00

This signal at "Low" level indicates that the
Read/Write head is positioned at track 00
(outermost track).
(c) WRITE PROTECT

When a write protected disk is installed, this
signal is at the "Low" level and the drive
inhibits writing.
(d) READ DATA

Normally, "High" level.
When reading data, digitalized data (RAW DATA:
clock and data combined) is output.

For FM record


C (clock): Leading edge of bit pulse...
$\pm 800 \mathrm{~ns}$ max. with respect to the
reference position
D (data) : Leading edge of bit pulse ... $\pm 400$ ns max. with respect to the reference position

## For MFM record


(e) READY

This READY signal indicates that the drive is
ready for Read/Write operation. The signal
becomes "Low" level when all the following
conditions are satisfied:
(i) The drive is supplied with +5 V and +12 V
power.
(ii) Drive selecting has been effected.

When the conditions for the READY signal are not satisfied. all other four outputs of items
(a) ~ (d) are turned OFF.
(6) Timing

Figs. $13 \sim 15$ illustrate timing of the Interface signal for each operation.


Fig. 13 Track Access Timing


Fig. 14 Read Operation Timing


Fig. 15 Write Operation Timing
6. OTHER FUNCTIONS
(1) Head Protect Function

Should an unnecessary step pulse be erroneously
input when the head is at the innermost or outermost track, the carriage system may repeatedly suffer mechanical stress. To prevent this trouble, the following logic function operates as a protective measure:
(i) When the TRACK 00 sensor is ON and the track counter reads 0 , step feed to the outer circumference is rejected.
(ii) When the track counter (8 bits) has overflown (256 or above), step feed to the inner track is rejected.

Thus, when the power has been turned $O N$, confirm the READY signal; then, perform step feed to the outer circumference until a TRACK 00 signal is turned ON .

